Effect of UV exposure of ITO/PEDOT:PSS substrates on the performance of inverted-type perovskite solar cells

Alishah H. M. , KAZİCİ M., Ongul F., Bozar S., CANTÜRK RODOP M., Kahveci C., ...More

JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, vol.31, no.10, pp.7968-7980, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 31 Issue: 10
  • Publication Date: 2020
  • Doi Number: 10.1007/s10854-020-03336-4
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Aerospace Database, Applied Science & Technology Source, Chemical Abstracts Core, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, Civil Engineering Abstracts
  • Page Numbers: pp.7968-7980
  • Süleyman Demirel University Affiliated: Yes


We have fabricated inverted-type perovskite solar cells employing CH3NH3PbI3-xClx perovskite in the form of ITO/PEDOT:PSS/Perovskite/PCBM/Al. The effects of UV radiation on ITO/PEDOT:PSS substrates have been investigated for perovskite solar cells. ITO/PEDOT:PSS substrates were exposed to UV radiation for 5 to 15 min. The perovskite solar cells fabricated on UV-irradiated ITO/PEDOT:PSS substrates exhibited better performance as compared to those fabricated on substrates employing non-treated PEDOT:PSS. We used photovoltaic characterization, UV-VIS absorption, sheet resistance, X-ray diffraction (XRD), scanning electron microscopy (SEM), fourier transform infrared spectroscopy (FTIR), and external quantum efficiency (EQE) characterization techniques to investigate the effect of UV irradiation of ITO/PEDOT:PSS substrates on the performance of perovskite solar cells. The devices fabricated on ITO/PEDOT:PSS (UV irradiated for 10 min) exhibited the best device performance of all. We achieved a 9% increase in the overall power conversion efficiency for the devices fabricated on substrates exposed to UV radiation.