Green textile production: a chemical minimization and substitution study in a woolen fabric production

Ozturk E., Cinperi N. C., KİTİŞ M.

ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, vol.27, no.36, pp.45358-45373, 2020 (SCI-Expanded) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 27 Issue: 36
  • Publication Date: 2020
  • Doi Number: 10.1007/s11356-020-10433-8
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Page Numbers: pp.45358-45373
  • Keywords: Chemical inventory, Chemical minimization, Chemical substitution, Cleaner production, Green textile production, WASTE-WATER, WASTEWATERS
  • Süleyman Demirel University Affiliated: Yes


This study aimed to decrease chemical costs and increase productivity and environmental performance by applying various practices for chemical minimization and substitution in an integrated textile mill producing woolen textile fabric. Detailed on-site process investigations and data collection studies were carried out in the mill. Process-based specific auxiliary chemical and dyestuff consumptions were calculated. Process and composite wastewater samples were collected at different periods and analyzed. The chemical loads of wastewaters were also calculated. The specific dyestuff and auxiliary chemical consumptions of the mill were compared with the data of a similar textile mill in the literature and the Integrated Pollution Prevention and Control (IPPC), Textile Best Available Techniques Reference (BREF) document. Thus, the chemical saving potential of the mill was evaluated. A detailed chemical inventory study was also carried out in the mill. The material safety data sheets (MSDSs) of 371 chemicals were examined in terms of biodegradation ratio, toxicity, and micropollutant content. As a result, 23 chemicals were proposed to be replaced with environmentally friendly substitutes. A total of 10 minimization and substitution practices were identified for the mill according to the investigation and analysis results. After the implementation of the suggested practices, reductions of 15-32 and 13-37% are estimated to be achieved in total chemical consumption and chemical oxygen demand (COD) load of wastewater, respectively. The potential payback periods of the suggested practices were calculated to range between 4 and 36 months. The employed methodology and the findings of this study may be useful for similar textile mills, stakeholders, and regulators. This study may also provide a road map to the textile industry for their sustainable and green production applications.