Deep learning techniques of losses in data transmitted in wireless sensor networks


TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, vol.29, no.2, pp.583-597, 2021 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 29 Issue: 2
  • Publication Date: 2021
  • Doi Number: 10.3906/elk-2001-145
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Applied Science & Technology Source, Compendex, Computer & Applied Sciences, INSPEC, TR DİZİN (ULAKBİM)
  • Page Numbers: pp.583-597
  • Keywords: Wireless sensor networks (WSNs), deep learning, deep belief networks (DBNs), deep neural networks (DNNs), recurrent neural networks (RNNs), AUTHENTICATION, OPTIMIZATION, SCHEME
  • Süleyman Demirel University Affiliated: Yes


Wireless sensor network (WSN) systems are frequently used today as a result of rapid technological developments. Wireless sensor networks, which form the basis of the Internet of Things (IoT), have a wide range of use in the world from education to health, and from military applications to home applications. It enables the data obtained from the sensors to be transferred between nodes with the help of end-to-end wireless protocols. In parallel with the increasing number of nodes in WSN, data traffic density also increases. Due to the limitations of the WSN network, lost packet rates also increase with increasing data traffic. In this study, a data set was created by examining the data transfers of different amounts of WSN nodes placed in different places. The effects of the number of sensors and the distance between them were evaluated from the data set. In this study, a data set was created by collecting the data from the sensor nodes placed at 1500m x 1500m intervals in the ns-3 discrete event emulator program. Today, with the rapid development of technology, deep learning methods which are one of the artificial intelligence methods, are also used in WSN. In this study, the loss rate in the transferred data packets was tried to be estimated with the highest accuracy by using deep belief network (DBN), recurrent neural network (RNN), and deep neural network (DNN) over the obtained dataset. Of these three deep learning methods, DNN deep learning method was found to accurately estimate the loss rate in the transferred data packets with an accuracy rate of 88.50%.