The effect of the prenatal and post-natal long-term exposure to 50 Hz electric field on growth, pubertal development and IGF-1 levels in female Wistar rats


Dundar B., Cesur G., ÇÖMLEKÇİ S. , Songur A. , Gokcimen A., Sahin O., ...More

TOXICOLOGY AND INDUSTRIAL HEALTH, vol.25, no.7, pp.479-487, 2009 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 25 Issue: 7
  • Publication Date: 2009
  • Doi Number: 10.1177/0748233709345942
  • Title of Journal : TOXICOLOGY AND INDUSTRIAL HEALTH
  • Page Numbers: pp.479-487

Abstract

To investigate prenatal and post-natal effects of extremely low frequency (ELF) electric field (EF) on growth and pubertal development, pregnant Wistar rats were randomly distributed among three groups. The pregnant rats of the prenatal group were exposed to 24-hour EF at 50 Hz EF 10 kV/min during pregnancy and their subsequent randomly selected female pups continued to be exposed until puberty. The post-natal group was unexposed to EF during pregnancy, but randomly selected female pups from this group were exposed to EF between delivery and puberty at the same doses and duration as the prenatal group. The third group was a sham-exposed group. The mean birth weight and weight gain of the pups during study period were found significantly reduced in prenatal group than post-natal and sham-exposed groups (p < 0.001). No difference could be found among the three groups for body weight at puberty (p > 0.05). The mean age at vaginal opening and estrous were significantly higher at prenatal group than post-natal and sham-exposed groups (p < 0.001). Serum insulin-like growth hormone-1 (IGF-1) levels were found significantly reduced in prenatal exposure group compared with the other two groups (p < 0.001). There was no difference for birth weight, weight gain, the mean age at vaginal opening and estrous and IGF-1 levels between post-natal and sham-exposed groups (p > 0.05). There was also no difference for FSH, LH and E2 levels at puberty among the three groups (p > 0.05). Histological examination revealed that both the prenatal and post-natal groups had the evidence of tissue damage on hypothalamus, pituitary gland and ovaries. In conclusion, early beginning of prenatal exposure of rats to 24 hours 50 Hz EF at 10 kV/m until puberty without magnetic field (MF) resulted in growth restriction, delayed puberty and reduced IGF-1 levels in female Wistar rats. These effects probably associated with direct toxic effects of EF on target organs. Post-natal exposure to EF at similar doses and duration seems to be less harmful on target organs. Post-natal exposure to EF at similar doses and duration seems to be less harmful.