Comparison of the efficiency of plaster stemming and drill cuttings stemming by numerical simulation

Cevizci H.

JOURNAL OF THE SOUTHERN AFRICAN INSTITUTE OF MINING AND METALLURGY, vol.119, no.5, pp.465-470, 2019 (SCI-Expanded) identifier identifier


Numerical simulation of the plaster stemming method (PSM) was performed and compared with the conventional drill cuttings stemming method (DCSM). Many earlier in situ tests have proved that PSM can use the blast energy more efficiently than DCSM. Despite PSM generating more blast vibrations, it has advantages over DCSM such as better fragmentation and lower cost per unit volume of rock blasted. In this study. numerical simulation with Autodyn software using a 2D tool was employed to prove the efficiency of plaster stemming by comparing parameters such as pressure, Y-velocity, Y-force, internal energy, acceleration-Y, and compression. For example, the maximum pressure attained at the top of explosive column was 7 395 MPa for DCSM whereas it was as high as 11 945 MPa for PSM. Most of the computed parameters were significantly higher in PSM than those obtained for DCSM. This paper is the first study elucidating the efficiency of PSM by numerical simulation. It is concluded that PSM can save substantial amounts of money and effort.