Investigation of in vitro interactions between different polymeric surfaces and blood proteins via phagocytosis phenomena


Ayhan F., Rad A., Ayhan H.

JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, cilt.14, ss.1427-1440, 2003 (SCI İndekslerine Giren Dergi) identifier identifier identifier

  • Cilt numarası: 14 Konu: 12
  • Basım Tarihi: 2003
  • Doi Numarası: 10.1163/156856203322599752
  • Dergi Adı: JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION
  • Sayfa Sayıları: ss.1427-1440

Özet

The effect of various polymeric materials on blood components and their in vitro phagocytosis was the object of the present research. Polystyrene- (PS) and polymethylmetacrylate- (PMMA) based microspheres were produced by phase-inversion polymerization and chemically modified to obtain different surface hydrophilicities. The interactions between blood proteins and chemically-and biologically-modified surfaces were investigated and compared to plain microspheres. Adsorption properties of albumin, fibrinogen and total immunoglobulines on microspheres were tested. Hydrophilic surfaces have high ability for human serum albumin (HSA) adsorption, which also leads to less phagocytosis of microspheres in vitro. In the case of activated PMMA(PVA) microspheres, both protein adsorption and phagocytosis were significant. Interaction of blood proteins with microspheres did not cause any change in phagocytosis by leukocytes and monocytes. BSA adsorption on microspheres with different hydrophilicities showed the same blood protein adsorption results and phagocytosis was not detected. On the other hand, the highest level of phagocytosis was found with fibronectin-modified microspheres. The changes occurring in intrinsic and extrinsic coagulation mechanisms were determined by measuring the activated partial tromboplastin time (APTT) and the prothrombin time (PT). PT values of blood samples did not increase by treatment with microspheres, except for PS/HEMA, while chemical modification caused important prolongation in APTT.