Monitoring forced degradation of drugs using silica coated AgNPs with surface-enhanced Raman scattering


Yilmaz H., Cobandede Z., Yilmaz D., Cinkilic A., Culha M., Demiralay E.

TALANTA, vol.214, 2020 (Peer-Reviewed Journal) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 214
  • Publication Date: 2020
  • Doi Number: 10.1016/j.talanta.2020.120828
  • Journal Name: TALANTA
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, L'Année philologique, Aerospace Database, Analytical Abstracts, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Chimica, Communication Abstracts, Compendex, EMBASE, Food Science & Technology Abstracts, Linguistic Bibliography, MEDLINE, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts

Abstract

Potential degradation products (DPs), even in small concentrations, can cause changes in pharmacological and toxicological properties of a drug with a significant impact on product quality and safety. Thus, their stability and understanding of possible degradation mechanisms have a significant importance. Although liquid chromatography is the conventional technique used for forced degradation studies with excellent accuracy and reproducibility, the main disadvantages of the technique are being expensive and time-consuming. As a powerful technique, surface-enhanced Raman scattering (SERS) can be an alternative with its high sensitivity, easy sample preparation and low cost. In this study, the degradation of both tofacitinib (TOF), a Janus kinase inhibitor, and methotrexate (MTX), an inhibitor of tetrahydrofolate dehydrogenase, are studied using SERS under hydrolytic, oxidative and thermal conditions using mesoporous silica coated silver nanoparticles (Si@AgNPs) as SERS substrates. The study demonstrated that the degradation of the tested drugs using Si@AgNPs as SERS substrates could be monitored through the spectral changes on SERS spectra of drugs under several degradation conditions.